IPv4 Header Format

By-

Shimona Gupta CSE Department Invertis University Bareilly

CONNECTIONLESS VS CONNECTION-ORIENTED SERVICE

- * TCP/IP's fundamental delivery service is connectionless
- Individual packets travel independently and contains information that identifies the intended recipient
- A reliable connection-oriented service is added on top of the underlying connectionless service

DATAGRAM FORWARDING ACROSS HETEROGENEOUS NETWORKS

- * Heterogeneous networks use different frame formats
- Router cannot forward a frame from one type of network to another without modification
- Two networks may use incompatible address formats (ie. address in a frame may make no sense on another network).

UNRELIABLE DATAGRAM DELIVERY

- IP makes a best-effort attempt to deliver each datagram
- No guarantee of datagram delivery
- Problems that can occur at layer 3
 - datagram duplication due to excessive delay
 - out-of-order delivery
 - data corruption
 - datagram loss

Higher layers of protocol software are needed to handle these errors.

IP Datagram Header Format [Source:*TCP/IP Protocol Suite by Forouzan]*

Service type or differentiated services[Source:TCP/IP Protocol Suite by Forouzan]

Protocol	TOS Bits	Description					
ICMP	0000	Normal	Note				
BOOTP	0000	Normal	INOIE	The precedence subfield was			
NNTP	0001	Minimize cost		nort of vor	sion 1 h	ut novor	
IGP	0010	Maximize reliability		used.			
SNMP	0010	Maximize reliability					
TELNET	1000	Minimize delay				_	
FTP (data)	0100	Maximize throughput					
FTP (control)	1000	Minimize delay	TOS Bits	Description	Value	Protocol	
TFTP	1000	Minimize delay	0000	Normal (default)	1	ICMP	
SMTP (command)	1000	Minimize delay	0001	Minimize cost	2	IGMP	
SMTP (data)	0100	Maximize throughput	0010		6	ТСР	
DNS (UDP query)	1000	Minimize delay	0010	Maximize reliability	17		
DNS (TCP query)	0000	Normal	0100	Maximize throughput	17	ODF	
DNS (zone)	0100	Maximize throughput	1000	Minimize delay	89	OSPF	
D: Minimize delay R: Maximize reliability T: Maximize throughput C: Minimize cost							
	D						
Precedenc	e	TOS bits	<u></u>	Codepoint			
Service type			Differentiated services 6				

IP DATAGRAM HEADER(CONT.)

- * Version: This 4-bit field defines the version of the IP protocol. Currently the version is 4.
- * Header Length: This 4-bit field defines the total length of the datagram header in 4-byte words. This field is needed because the length of the header is variable (between 20 and 60 bytes).
- Service Type: In the original design of IP header, this field was referred to as type of service (TOS), which defined how the datagram should be handled.
- *** Total Length (16 bits):** Total length of the datagram, measured in octets, including header and data.

Identification (16 bits): A value assigned to aid in assembly of fragments.

* Flags (3 bits): Various Control Flags.

- Bit 0: Reserved. Must be 0.
- Bit 1: (DF) 0 = May Fragment, 1 = Don't Fragment
- * Bit 2: (MF) 0 = Last Fragment, 1 = More Fragments
- Time to Live (8 bits): Maximum time the datagram is allowed to exist in the system. Each router that handles the datagram decrements the TTL by 1.

- * Protocol: This 8-bit field defines the higher-level protocol that uses the services of the IP layer. An IP datagram can encapsulate data from several higher level protocols such as TCP, UDP, ICMP, and IGMP.
- Checksum: It is used to detect error in the delivery of packet.
- Source address: This 32-bit field defines the IP address of the source.
- Destination address: This 32-bit field defines the IP address of the destination.

Numerical 1:

An IPv4 packet has arrived with the first 8 bits as shown: 01000010

The receiver discards the packet. Why?

Solution

There is an error in this packet. The 4 leftmost bits (0100) show the version, which is correct. The next 4 bits (0010) show an invalid header length $(2 \times 4 = 8)$. The minimum number of bytes in the header must be 20. The packet has been corrupted in transmission.